Organic and inorganic pigments for plastics | Introduction | 3 | |------------------------|----| | ▶ Product information | 4 | | Explanation of data | 5 | | | | | Organic pigments | | | Yellow | 7 | | Orange & Blue | 9 | | Red & Rubine | 10 | | Pink, Magenta & Violet | 13 | | Blue & Green | 14 | | | | | Inorganic pigments | | | Sicotan® | 15 | | Sicopal [®] | 16 | | Sicotrans® | 17 | Welcome to an advanced world of color. ## Same high quality, just easier. Shaping the future of organic and inorganic pigments. At BASF, we create products that help you create yours. In this folder we will familiarize you with our range of organic and inorganic pigments for plastics that are particularly suitable for plastic masterbatches and for straight compounding/mass-coloration. These are part of our range for the plastics industry, comprising organic and inorganic pigments, mono-pigment concentrates, polymer soluble dyes and effect pigments. We are consistently striving to provide pigments of the highest quality and are working on further solutions for the plastics industry. Our new portfolio makes your life easier. With the latest changes, our vast portfolio has received hundreds of exciting additions, creating the need to simplify this immense diversity of products and product variant to make finding and ordering easy and convenient for you. All colors now follow the proven and tested BASF nomenclature. We are certain you will find this new consistency most helpful in your daily work. Only the names have changed. Finding the pigments you need to achieve the perfect results is now easier than ever. It all starts with the BASF brand name the product belongs to. Your favorite pigment might have had a name change. If you familiarize yourself with the new name, the rest is pure logic. All pigments have now been integrated in the tried and tested BASF nomenclature and are clearly shown on the BASF color wheel. Therefore, every product in our portfolio has six elements to its name that make up the BASF nomenclature: product brand e.g. Heliogen®, followed by basic color shade, area of use, position in the color wheel, serial number and application indicator. For further information please contact your local BASF representative. We make it work for you. The world is a colorful place and our world of color for the plastics industry offers you the biggest selection of organic and inorganic pigments worldwide, suited for a great variety of applications. Have a look! BASF offers the following organic and inorganic pigments: #### **Organic pigments** ## Cinquasia®, Cromophtal®, Irgazin®, Paliogen® and Paliotol® These products provide the broadest range of high-performance pigments, combining outstanding coloristic properties with excellent fastness to heat, light, chemicals and solvents. In addition, certain products offer excellent weather resistance. #### Heliogen® These Cu-phthalocyanine based blue and green organic pigments are known for their very good to excellent overall properties. #### Irgalite® Classical organic yellow, orange and red pigments with good end-use performance. #### **Inorganic pigments** #### Sicotan® These inorganic mixed-phase yellow and brown pigments have outstanding fastness to heat, light, weather, chemicals and solvents, even in very low concentrations. Their exceptionally high heat and chemical resistance makes them suitable for almost all polymer types. The products do not migrate and do not influence the warping behavior of HDPE. They are all suitable for use in blends with organic pigments, achieving brilliant shades with high opacity. #### Sicopal® These inorganic pigments with their spinel structure are based on various metal oxides. All have outstanding fastness to light and weather and most of them achieve the highest heat resistance. None of the products migrate, nor do they influence the warping behavior of HDPE. #### Sicotrans® These extremely finely dispersed transparent iron oxide red pigments have excellent fastness to heat, light and weather. The products do not migrate, nor do they influence the warping behaviour of HDPE. #### Further product ranges For applications in which ease of dispersion is an important criteria (e.g. films and fibers), it is advisable to use fully dispersed mono-pigment concentrates rather than powder pigments. BASF offers a range of mono-pigment concentrates suitable for a selection of polymers. Please see the product table for information on our products that are available as mono-pigment concentrates. For further details on these mono-pigment concentrates, please see the respective brochure. BASF is the leading manufacturer of a comprehensive range of additives for the plastics industry. For further information on our stabilizer offer for plastics, please refer to the respective brochures. ## Explanation of data: #### ··· Introduction The illustrations and data presented in this shade card are intended only as a general guide and for assistance in pigment selection. Users are recommended to conduct their own trials, under their own specific conditions to ensure the correct color appearance and application suitability. If further information is required on any of the products listed in this shade card, please contact your local BASF representative. #### ··· Color shades For ease of use the shade card is provided as a downloadable PDF. Please note, that due to differences in computer screen color calibration the PDF shade card can only help you to roughly estimate the shade, but the colors cannot be binding. All organic pigment shades shown here are based on a full shade concentration of 0.2 % pigment except violets, where 0.1 % pigment was used. In the white reductions the illustrations are based on the respective pigment concentration to achieve 1/3 ISD based on 5 % TiO_2 . Inorganic pigment shades are based on a full shade concentration of 2 % pigment and a ratio of 1:4 for white reductions. ### ··· Polymer suitability Possible fields of application are shown in the table, opposite each pigment. Please note that these are intended only as a general guide. #### Key to the tables: - Recommended - □ Limited suitability #### --- Application performance A selection of performance data of the most important properties in polyolefins (HDPE) and PVC (Ba/Zn stabilized flexible PVC) are presented here. All data are based on the following test methods at a concentration for organic pigments of 0.1% for full shades (FS) and at a ratio of 1:10 for white reductions (WR). For inorganic pigments concentrations of 1% for full shades (FS) and a ratio of 1:4 for white reductions (WR) were used. #### Migration (HDPE and PVC-p) Migration resistance was determined in accordance with DIN 53775 by direct contact between the colored test sheet and a white flexible PVC contact sheet. Staining of the contact sheet was assessed using the ISO 105 A03 Grey Scale for staining, GS 5 denoting no migration and steps 4 – 5 being subdivided. #### ··· Heat resistance (HDPE) Heat resistance was determined by injection molding in accordance with ISO 12877-2. The results show the highest temperature at which the color difference versus a standard is no greater than GS 4 on the ISO 105 A02 Grey Scale for assessing color change. For most of the Sicotan® and Sicopal® products and some high performance organic pigments, a GS rating of 5 is achieved at the highest testing temperature of 300 °C. Therefore, heat resistance above 300 °C can be achieved under certain circumstances #### ··· Light fastness (HDPE and PVC-p) Light fastness was determined using Xenon lamp exposure tests in accordance with the equivalent test methods ISO 4892-2 or ISO 105 B02. The samples were assessed against the 1 – 8 Blue Wool Scale as described in ISO 105 B02, Blue Wool 8 denoting the highest light fastness. ## Explanation of data: #### Hot light fastness (PVC-p) Exposure was carried out to 600 kJ/m² in accordance with ASTM SAE J 2412 (formally ASTM SAE J 1885). Color changes were assessed using the ISO 105 A02 Grey Scale for assessing color change, GS 5 denoting no change and GS 1 denoting the lowest hot light fastness. #### Weather resistance (HDPE and PVC-p) Weather resistance was determined using Xenon light exposure tests in accordance with the equivalent test methods ASTM G 155, ISO 4892-2 or the former Ciba internal test method WOM 119/50. The HDPE samples were exposed for up to 3000 hours and the PVC-p samples for up to 5000 hours. Color changes were assessed using the ISO 105 A02 Grey Scale for assessing color change, GS 5 denoting no change and GS 1 denoting the lowest weather resistance. #### ···► Note Hot light fastness and weather resistance ratings below GS 3 are not included in this pattern card. Products with a low performance are not recommended for these applications. #### Warping (HDPE) Influence on the warping tendency of injection-molded HDPE articles was determined in accordance with ISO 294-4/ASTM 955. #### Warping tendency was assessed as follows: - ► None (N): No significant influence under laboratory test conditions and widely confirmed in practice. - ► Low (L): Slight influence determined in laboratory testing, but successful in practice. - ► High (H): Significant influence in the laboratory and in practice. Use for large / complex HDPE injection moldings is not recommended. #### ··· 1/3 ISD (HDPE and PVC-p) Color strength is indicated by the number of parts of colored pigment which, in combination with defined percentage of ${\rm TiO_2}$ in a particular polymer or compound, gives 1/3 International Standard Depth (ISD) as described in DIN 53.235. #### ··· Density Density was determined in a pycnometer, as described in ISO R787-10, and is expressed as g/cm³. #### Bulk density Bulk density was determined from the weight of a product sample that can be contained in a vessel of specified volume and is expressed as kg/l. Assessment was in accordance with ISO R787-11. #### Certain inorganic
pigments are also available in a fine granule form (FG). This product form is low dusting and free flowing. | Organic pigments | | | | | | | Αŗ | plic | catic | ns | | | | | | | | | | | Арр | licati | ons p | erfori | manc | е | | | | | | | | sical | | | Availa | | |--|---------------|--------------------|-----|---|----|-----|------------|----------|-------|--------|-----|---|------|------|-------------------|------|--------------|--------------|---------------|---------------|------------------------|------------------------|---------|-------------------|---------------|---------------|---------------------------|----------------------|--------------------------|------------------------|------------------------|---|---------------------------------------|---------|--------------|-------------|--------------|------------------------------| | | | | | | | G | ene | ral | | | | | Fibe | ers | | | | | HD | PE | | | | | | | PVC | С-р | | | | | prop | erties | • | pr | epara | ations | | | Full
shade | White
reduction | PVC | 9 | PS | ABS | PA6 | <u> </u> | PMMA | Bubber | PUR | a | . HE | PA . | Migration FS 0.1% |) | неат FS 0.1% | Heat WR 1:10 | Light FS 0.1% | Light WR 1:10 | Weather 3000 h FS 0.1% | Weather 3000 h WR 1:10 | Warping | Migration FS 0.1% | Light ES 0.1% | Light WR 1:10 | Hot linkt 600 k I ES 0 1% | 00 1.00 Mg/m 20.1 /0 | Hot light 600 kJ WR 1:10 | Weather 5000 h FS 0.1% | Weather 5000 h WR 1:10 | 1/3 ISD in HDPE (1 % TiO ₂) | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | Eupolen® PE | Microlen® MC | Micranyl® Q
Microlith® KP | | Paliotol® Yellow K 0961
old: Paliotol® Yellow K 0961 HD
C.I. Pigment Yellow 138*
Quinophthalone | | | • | - | | | ⊠ [| - I | | 1 - | - | - | | | 4-5 | i 28 | 80 | 270 | 8 | 7 | - | - | L | 4.5 | 5 7-8 | 3 7 | 5 | j 4 | -5 | - | - | 0.21 | 0.18 | 1.80 | 0.40 | • | | | | Cromophtal® Yellow K 0990 FP
old: Cromophtal® Yellow 8GNP
C.I. Pigment Yellow 128
Disazo condensation | | | • | | | _ | | ⊠ [2 | 3 ⊠ | 1 = | | - | I 🗵 | × | 5 | 26 | 60 | 260 | 8 | 7-8 | 4-5 | 3 | N | 5 | 8 | 7-8 | 3 5 | i 4 | -5 | 4-5 | 4 | 0.21 | 0.20 | 1.47 | 0.13 | | | | | Paliotol® Yellow K 1070
old: Irgalite® Yellow WGP
C.I. Pigment Yellow 168
Monoazo salt | | | | - | | | | X | 3 ⊠ |] | • 0 | | ⊠ | × | 5 | 26 | 60 | 240 | 7 | 7 | 3 | - | N | 5 | 7-8 | 3 7 | - | | - | - | - | 0.37 | 0.37 | 1.66 | 0.25 | | • | • | | Cromophtal® Yellow K 1210 FP
old: Cromophtal® Yellow 3GNP
C.I. Pigment Yellow 93
Disazo condensation | | | • | - | - | _ | | ⊠ [2 | ₫ [| 1 ■ | • | - | I 🛛 | ⊠ | 5 | 28 | 30 | 280 | 8 | 6-7 | 4 | - | N | 5 | 8 | 7-8 | 3 5 | i | 5 | 4 | 3-4 | 0.15 | 0.15 | 1.45 | 0.14 | | • | • • | | Cromophtal® Yellow 2GF
C.I. Pigment Yellow 155
Disazo condensation | | | • | • | | × | | ⊠ [2 | 3 ⊠ | 1 = | • | - | I 🗵 | ⊠ | 4.2 | 26 | 60 | 260 | 7 | 6-7 | 3-4 | - | L | 4.8 | 8 | 7-8 | 3 5 | , | 4 | 4-5 | 3 | 0.15 | 0.15 | 1.40 | 0.20 | | • | | | Cromophtal® Yellow K 1310
old: Cromophtal® Yellow 4GV
C.I. Pigment Yellow 215
Pteridine | | | | • | - | • | = 0 | ⊠ [2 | 3 ⊠ | 1 C | | | ⊠ | ⊠ | 5 | 30 | 00 | 300 | 7 | 7 | 4-5 | 4 | L | 5 | 7-8 | 3 7 | 4 | ı | 4 | - | - | 0.18 | 0.15 | 1.62 | 0.30 | • | | | | Irgalite® Yellow K 1320
old: Irgalite® Yellow BRMO
C.I. Pigment Yellow 14**
Diarylide | | | • | 0 | ⊠ | | | ⊠ [2 | 3 ⊠ | 1 = | • | | I 🗵 | ⊠ | 2-3 | 3 20 | 00 | 200 | 6-7 | 6 | | - | - | 4.7 | 6 | 6 | - | | - | - | - | 0.13 | 0.11 | 1.63 | 0.21 | | | | | Cromophtal® Yellow K 1410
old: Cromophtal® Yellow 2GO
C.I. Pigment Yellow 180
Benzimidazolone | | | • | • | • | 0 | ⊠ [| - I | • | | | - | I 🗵 | ⊠ | 5 | 30 | 00 | 300 | 7-8 | 7 | 4-5 | - | L | 5 | 8 | 7-8 | 3 5 | , | 4 | 4 | - | 0.15 | 0.11 | 1.40 | 0.21 | | • | | | Irgalite® Yellow K 1415
C.I. Pigment Yellow 13**
Diarylide | | | • | | ⊠ | × | | ⊠ [2 | 3 ⊠ | 1 . | - | × | I 🗵 | × | 4.6 | 20 | 00 | 200 | 7-8 | 6-7 | - | - | - | 5 | 7 | 6 | - | | - | - | - | 0.10 | 0.08 | 1.34 | 0.21 | | • | | | Paliotol® Yellow K 1420
old: Irgalite® Yellow WSR
C.I. Pigment Yellow 62
Monoazo salt | | | • | • | | 0 | | ⊠ [2 | 3 ⊠ | 1 . | • - | × | I ⊠ | ⊠ | 5 | 25 | 50 | 260 | 7 | 7 | | - | L | 5 | 7 | 7 | - | | - | - | - | 0.35 | 0.33 | 1.59 | 0.20 | | • | | ^{*}Products with this C.I. number may vary in color and resistance properties in different polymer systems. **At temperatures above 200 °C diarylide pigments may decompose. Users are advised to follow the recommendations of ETAD information No. 2. | Organic pigments | | | | | | | Ap | plica | atior | าร | | | | | | | | | | Α | ppli | catio | ns pe | erform | nance | | | | | | | | sical | | | | lable | |--|---------------|--------------------|-----|---|------------|-----|-------|-------|-------|--------|-----|----|------|----|-------------------|--------------|--------------|---------------|---------------|-----|------------------------|------------------------|---------|-------------------|---------------|---------------|--------------------------|--------------------------|------------------------|------------------------|---|---------------------------------------|---------|--------------|-------------|--------------|------------------------------| | | | | | | | Ge | enera | al | | | | Fi | bers | S | | | | Н | DPE | | | | | | | | PVC- | р | | | | prop | erties | 3 | pı | repai | rations | | | Full
shade | White
reduction | PVC | Ю | PS | ABS | PET | 2 | PMMA | Rubber | PUR | 윱 | PET | ЬА | Migration FS 0.1% | Heat FS 0.1% | Heat WR 1:10 | Light FS 0.1% | Light WR 1:10 | | Weather 3000 h FS 0.1% | Weather 3000 h WR 1:10 | Warping | Migration FS 0.1% | Light FS 0.1% | Light WR 1:10 | Hot light 600 kJ FS 0.1% | Hot light 600 kJ WR 1:10 | Weather 5000 h FS 0.1% | Weather 5000 h WR 1:10 | 1/3 ISD in HDPE (1 % TiO ₂) | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | Eupolen® PE | Microlen® MC | Micranyl® Q
Microlith® KP | | Cromophtal® Yellow K 1500 FP
old: Cromophtal® Yellow GRP
C.I. Pigment Yellow 95
Disazo condensation | | | • | - | = [| | 1 🛛 | ⊠ | | - | | • | | | 5 | 280 | 280 | 7-8 | 6-7 | 7 | 3 | - | N | 5 | 8 | 7-8 | 4-5 | 4-5 | 3-4 | - | 0.14 | 0.13 | 1.36 | 0.14 | | • | • | | Paliotol® Yellow K 1700
C.I. Pigment Yellow 183
Monoazo salt | | | • | - | • | • [| | | - | - | | • | | × | 5 | 300 | 280 | 7 | 6-7 | 7 | | | L | 5 | 7 | 6 | 4 | 3-4 | - | - | 0.23 | 0.18 | 1.70 | 0.10 | | | | | Irgalite® Yellow K 1740
old: Irgalite® Yellow B3RN
C.I. Pigment Yellow 83**
Diarylide | | | • | | ⊠ [| ⊠ ⊠ | 1 🗵 | × | × | - | | | | | 4.4 | 200 | 200 | 7 | 7 | | - | | - | 5 | 8 | 7-8 | 5 | 3-4 | - | - | 0.07 | 0.05 | 1.51 | 0.20 | | • | • • | | Paliotol® Yellow K 1760 FP
old: Cromophtal® Yellow HRPN
C.I. Pigment Yellow 191:1
Monoazo salt | | | | - | - 1 | |) | | • | - | | • | | | 5 | 300 | 300 | 7 | 6-7 | 7 3 | 3-4 | - | N | 5 | 8 | 7 | 4-5 | 3-4 | - | - | 0.35 | 0.31 | 1.43 | 0.21 | • | | • | | Paliotol® Yellow K 1800
old: Paliotol® Yellow K 2270
C.I. Pigment Yellow 183
Monoazo salt | | | | • | | • □ | | | | - | | • | | ⊠ | 5 | 300 | 300 | 7 | 6-7 | 7 3 | 3-4 | - | L | 5 | 8 | 7 | 4-5 | 3-4 | - | - | 0.43 | 0.34 | 1.80 | 0.40 | • | | | | Paliotol® Yellow K 1841 / FP
C.I. Pigment Yellow 139*
Isoindoline | | | - | | | ⊠ ⊠ | 1 🗵 | × | ⋈ | _ | | - | ⊠ | ⊠ | 5 | 240 | 240 | 8 | 7 | | 3 | | L | 4.5 | 7 | 6 | 3-4 | 3-4 | - | - | 0.14 | 0.10 | 1.60 | 0.30 | • | | | | Irgazin® Yellow K 2060 FP
old: Cromophtal® Yellow 3RLP
C.I. Pigment Yellow 110
Isoindolinone | | | • | - | - | | 1 🛛 | × | × | - | | | | | 5 | 300 | 300 | 7-8 | 8 | 2 | 1-5 | 4 | Н | 5 | 8 | 8 | 4-5 | 4-5 | 4-5 | 4-5 | 0.30 | 0.30 | 1.80 | 0.23 | • | • | • • | | Irgazin® Yellow K 2070
old: Cromophtal® Yellow 2RLTS
C.I. Pigment Yellow 110
Isoindolinone | | | • | _ | 0 (| | 1 🛛 | ⊠ | ⋈ | - | | | | | 5 | 300 | 300 | 8 | 8 | 4 | 1-5 | 3-4 | Н | 5 | 8 | 8 | 4-5 | 4-5 | 4-5 | 4-5 | 0.26 | 0.20 | 1.67 | 0.25 | | • | • • | | Irgazin® Yellow K 2080
old: Cromophtal® Yellow 2RLP
C.I. Pigment Yellow 110
Isoindolinone | | | | • | • | | 1 🛛 | | ⋈ | • | - | • | | | 5 | 300 | 300 | 8 | 8 | 4 | 1-5 | 3-4 | Н | 5 | 8 | 8 | 4-5 | 4-5 | 4-5 | 4-5 | 0.24 | 0.22 | 1.78 | 0.27 | | | | ^{*}Products with this C.I. number may vary in color and resistance properties in different polymer systems. **At temperatures above 200 °C diarylide pigments may decompose. Users are advised to follow the recommendations of ETAD information No. 2. | Organic pigments | | | | | | ı | Appl | icati | ons | | | | | | | | | | App | olicatio | ons pe | erform | nance | | | | | | | Phys | | | Availa | | |---|---------------|-----------------|-----|------|----------|-----|------|-------|----------|----------|----|------|-----|-------------------|--------------|--------------|---------------|---------------|------------------------|------------------------|---------|-------------------|---------------|---------------|--------------------------|--------------------------|------------------------|------------------------|--|---------------------------------------|---------|--------------|--------------------------------------|------------------------------| | | | | | | | Gen | eral | | | | | Fibe | ers | | | | Н | DPE | | | | | | | PVC- | р | | | | prop | erties | | preparat | tions | | | Full
shade | White reduction | PVC | PO : | PS | PA6 | PET | S . | PMMA | Rubber | dd | PET | PA | Migration FS 0.1% | Heat FS 0.1% | Heat WR 1:10 | Light FS 0.1% | Light WR 1:10 | Weather 3000 h
FS 0.1% | Weather 3000 h WR 1:10 | Warping | Migration FS 0.1% | Light FS 0.1% | Light WR 1:10 | Hot light 600 kJ FS 0.1% | Hot light 600 kJ WR 1:10 | Weather 5000 h FS 0.1% | Weather 5000 h WR 1:10 | 1/3 ISD in HDPE (1% TiO ₂) | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | Eupolen® PE Microlen® MC Microlen® O | Micranyl® Q
Microlith® KP | | Irgazin® Orange K 2890
old: Cromophtal® Orange 2G
C.I. Pigment Orange 61
Isoindolinone | | | - | - | • 0 | | | ⊠ | . | | | I 🗵 | | 5 | 300 | 300 | 7-8 | 7-8 | 4-5 | 3 | Н | 4.9 | 8 | 8 | 5 | 5 | 4 | 3-4 | 0.23 | 0.20 | 1.66 | 0.30 | | | | Irgazin® Orange K 2910
old: Cromophtal® DPP Orange TRP
C.I. Pigment Orange 71
Diketo-pyrrolo-pyrrole | | | • | • | ■ □ | | | ⊠ | ⊠ | • | • | I 🗵 | × | 5 | 300 | 300 | 7-8 | 7-8 | 4 | - | L | 5 | 7-8 | 7-8 | 4-5 | 4 | - | - | 0.23 | 0.17 | 1.40 | 0.17 | • | | | Paliotol® Orange K 2920
C.I. Pigment Orange 79*
Azo salt | | | • | - | | | | | | = | × | 1 🗵 | × | 5 | 280 | 280 | 5 | 4 | - | - | L | 5 | 5 | 4 | - | - | - | - | 0.30 | 0.27 | 1.70 | 0.18 | | | | Irgalite® Orange K 2925
old: Irgalite® Orange F2G
C.I. Pigment Orange 34**
Diarylide | | | • | 0 | × | | | ⊠ | ⊠ | • • | × | 1 🗵 | | 3-4 | 200 | 200 | 6-7 | 5 | - | - | - | 4.7 | 6-7 | 5-6 | - | | · | - | 0.16 | 0.10 | 1.37 | 0.16 | • | | | Cromophtal® Orange K 2960
old: Cromophtal® Orange GP
C.I. Pigment Orange 64
Benzimidazolone | | | - | - | - | l 🗵 | | | | | | | ⊠ | 5 | 300 | 300 | 8 | 7-8 | 3-4 | - | L | 5 | 7-8 | 7-8 | 4-5 | 3-4 | - | - | 0.21 | 0.21 | 1.59 | 0.39 | (MP) | • | | Irgazin® Orange K 2990
old: Irgazin® DPP Orange RA
C.I. Pigment Orange 73
Diketo-pyrrolo-pyrrole | | | - | | | I 🖾 | | ⊠ | M I | | × | 1 🗵 | × | 4.9 | 300 | 280 | 8 | 7 | 4 | - | Н | 4.6 | 7-8 | 6-7 | 3-4 | - | - | - | 0.35 | 0.37 | 1.30 | 0.29 | | | | Cromophtal® Brown K 3001
old: Cromophtal® Brown 5R
C.I. Pigment Brown 23
Disazo condensation | | | - | | | | | ⊠ | . | • • | | 1 🗵 | | 5 | 260 | 260 | 6-7 | 7 | 5 | 3-4 | - | 4.9 | 8 | 7-8 | 5 | 5 | 4 | - | 0.16 | 0.15 | 1.55 | 0.21 | | • | ^{*}Products with this C.I. number may vary in color and resistance properties in different polymer systems. *** At temperatures above 200 °C diarylide pigments may decompose. Users are advised to follow the recommendations of ETAD information No. 2. | Organic pigments | | | | | | App | olica | atior | าร | | | | | | | | | | | Appli | icatic | ns pe | erform | ance | | | | | | | Phy | | | | Availa | | |--|-----------------|-----|----|----|----------|------|-------|-------|--------|-----|--------------|------|----|-------------------|--------------|--------------|------------|---------------|---------------|------------------------|------------------------|---------|-------------------|---------------|---------------|--------------------------|--------------------------|------------------------|------------------------|---|---------------------------------------|---------|--------------|-------------|--------------|------------------------------| | | | | | | Ge | nera | ıl | | | | F | iber | s | | | | | HDF | Έ | | | | | | | PVC- |) | | | | prop | erties | • | pr | epara | ations | | Full
shade | White reduction | PVC | ЬО | PS | ABS | PET | 2 | PMMA | Rubber | PUR | & | PET | PA | Migration FS 0.1% | Heat FS 0.1% | Heat WR 1:10 | % + ES O 7 | Light FS U.1% | Light WR 1:10 | Weather 3000 h FS 0.1% | Weather 3000 h WR 1:10 | Warping | Migration FS 0.1% | Light FS 0.1% | Light WR 1:10 | Hot light 600 kJ FS 0.1% | Hot light 600 kJ WR 1:10 | Weather 5000 h FS 0.1% | Weather 5000 h WR 1:10 | 1/3 ISD in HDPE (1 % TiO ₂) | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | Eupolen® PE | Microlen® MC | Micranyl® Q
Microlith® KP | | Cromophtal® Scarlet K 3540
old: Cromophtal® Scarlet RN
C.I. Pigment Red 166
Disazo condensation | | • | • | - | o 8 | | × | | | - | - | | | 5 | 300 | 300 |) 7- | -8 | 7-8 | 3-4 | | Н | 5 | 8 | 7 | 5 | 4-5 | 3-4 | - | 0.20 | 0.18 | 1.47 | 0.19 | | | • • | | Paliogen® Red K 3580
C.l. Pigment Red 149
Perylene | | • | • | - | 0 0 | | | - | • | • | - | | • | 5 | 280 | 280 |) 8 | 3 | 7 | 4 | 3 | Н | 5 | 8 | 7-8 | 5 | 3-4 | 4 | - | 0.15 | 0.12 | 1.40 | 0.23 | | | • | | Irgalite® Red K 3690
old: Lithol® Red K 3690
C.I. Pigment Red 53:3*
β-Naphthol (Sr) | | • | - | _ | × | | ⋈ | ⊠ | | | × | ⊠ | | 5 | 240 | 240 |) 4 | 1 | 2 | - | - | Н | 5 | 4 | 2 | - | - | - | - | 0.31 | 0.18 | 1.70 | 0.33 | | | | | Irgazin® Flame Red K 3800
old: Cromophtal® DPP Flame Red FP
C.I. Pigment Red 272
Diketo-pyrrolo-pyrrole | | • | - | | ⊠ ⊠ | ⊠ | | × | | - | | × | | 4.9 | 300 | 300 |) 7- | -8 | 7-8 | 3-4 | - | L | 4.9 | 7-8 | 7 | 4 | 3-4 | 3-4 | - | 0.18 | 0.15 | 1.38 | 0.18 | | • | | | Cromophtal® Red K 3830
old: Cromophtal® Red G
C.I. Pigment Red 220
Disazo condensation | | | • | - | 0 0 | | ⊠ | ⊠ | | | | ⊠ | | 5 | 300 | 300 |) 7- | -8 | 7-8 | 3 | | N | 4.8 | 7 | 7 | - | - | - | - | 0.20 | 0.17 | 1.40 | 0.25 | | | | | Irgazin® Red K 3840
old: Cromophtal® Red 2030
C.I. Pigment Red 254
Diketo-pyrrolo-pyrrole | | • | • | - | | I 🛛 | ⊠ | × | • | - | • | ⊠ | | 5 | 300 | 300 | 3 (| 3 | 8 | 4 | - | Н | 5 | 8 | 8 | 5 | 5 | 5 | 3 | 0.16 | 0.15 | 1.63 | 0.18 | | • | • • | | Irgazin® Red K 3840 LW old: Cromophtal® Red 2028 C.I. Pigment Red 254 Diketo-pyrrolo-pyrrole | | | • | | □ ⊠ | I 🛛 | ⊠ | | | | • | ⊠ | | 5 | 300 | 300 |) 8 | 3 | 8 | 4 | | N | 5 | 8 | 7-8 | 4-5 | 4-5 | 4-5 | 3-4 | 0.16 | 0.15 | 1.63 | 0.18 | | • | | | Irgazin® Red K 3845
old: Irgazin® DPP Red BO
C.I. Pigment Red 254
Diketo-pyrrolo-pyrrole | | • | • | - | 0 0 | | ⊠ | | - | | ⊠ | ⊠ | | 5 | 300 | 300 | 3 (| 3 | 8 | 5 | 3 | Н | 5 | 8 | 8 | 5 | 5 | 5 | 3-4 | 0.23 | 0.23 | 1.62 | 0.33 | | | • | | Irgazin® Red K 3845 LW old: Cromophtal® DPP Red BOC C.I. Pigment Red 254 Diketo-pyrrolo-pyrrole | | ⊠ | • | - | o c | | ⊠ | | | | × | ⊠ | | 5 | 300 | 300 |) 8 | 3 | 8 | 5 | 3 | L | | | Not s | uitable | n PVC | | | 0.23 | - | 1.62 | 0.33 | | • | | $^{{}^\}star \text{Products}$ with this C.I. number may vary in color and resistance properties in different polymer systems. | Organic pigments | | | | | | | App | olica | ition | ıs | | | | | | | | | | Арр | licati | ons p | erforn | nance | | | | | | | Phys | | | | vailab | | |---|---------------|--------------------|-----|----|------|------------|------|-------|-------|--------|-----|-----|------------|-----|-------------------|--------------|--------------|---------------|---------------|------------------------|------------------------|---------|-------------------|---------------|---------------|--------------------------|--------------------------|------------------------|------------------------|--|---------------------------------------|---------|--------------|-------------|-----------------------------|---------------| | | | | | | | Ge | nera | ıl | | | | Fil | bers | | | | | Н | PE | | | | | | | PVC- | р | | | | prope | erties | i | pre | parati | ions | | | Full
shade | White
reduction | PVC | РО | PS : | ABS
PA6 | PET | 2 | PMMA | Rubber | PUR | ЬР | PET | | Migration FS U.1% | Heat FS 0.1% | Heat WR 1:10 | Light FS 0.1% | Light WR 1:10 | Weather 3000 h FS 0.1% | Weather 3000 h WR 1:10 | Warping | Migration FS 0.1% | Light FS 0.1% | Light WR 1:10 | Hot light 600 kJ FS 0.1% | Hot light 600 kJ WR 1:10 | Weather 5000 h FS 0.1% | Weather 5000 h WR 1:10 | 1/3 ISD in HDPE (1% TiO ₂) | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | Eupolen® PE | Microlen® MC
Micranyl® Q | Microlith® KP | | Cromophtal® Red K 3890 FP
old: Cromophtal® Red BRNP
C.I. Pigment Red 144
Disazo condensation | | | • | • | • | | 1 0 | | | • | | • | | 1 ! | 5 | 300 | 300 | 7-8 | 7 | 3 | - | Н | 4.9 | 8 | 7-8 | 5 | 5 | 3-4 | - | 0.14 | 0.12 | 1.52 | 0.14 | | • • | • | | Cromophtal® Red K 3900 FP
old: Cromophtal® Red BNFP
PPC.I. Pigment Red 214
Disazo condensation | | | • | - | | | - | | | • | | | | 1 ! | 5 | 300 | 300 | 7-8 | 7 | 4-5 | - | Н | 5 | 8 | 7-8 | 5 | 5 | 3 | - | 0.14 | 0.13 | 1.55 | 0.10 | | | | | Paliogen® Red K 3911
old: Paliogen® Red K 3911 HD
C.I. Pigment Red 178
Perylene | | | • | • | - | 0 0 | | _ | | • | | • | 0 0 | 1 ! | 5 | 300 | 300 | 8 | 7 | 3-4 | - | Н | 5 | 8 | 7 | 5 | 4 | - | - | 0.26 | 0.18 | 1.60 | 0.22 | • | | | | Cromophtal® Red K 4035
old: Cromophtal® Red 2B
C.I. Pigment Red 221
Disazo condensation | | | • | | | ⊠ ⊠ | I 🗵 | | ⊠ | • | • | ⊠ | | 1 ! | 5 | 260 | 260 | 7-8 | 6-7 | 3 | - | - | 5 | 7-8 | 6-7 | 5 | 3 | - | - | 0.12 | 0.11 | 1.33 | 0.30 | | • | | | Irgalite® Red K 4060 FP
old: Irgalite® Red 2BSP
C.I. Pigment Red 48:3*
BONA (Sr) | | | • | • | | | I 🗵 | | ⊠ | • | • | • | | 1 ! | 5 | 240 | 260 | 6 | 4 | - | - | L | 5 | 6 | 5-6 | - | - | - | - | 0.17 | 0.14 | 1.82 | 0.22 | | • | | | Irgazin® Rubine K 4080 / K 4085
old: Cromophtal® Rubine TR /
Irgazin® DPP Rubine TR
C.I/ Pigment Red 264
Diketo-pyrrolo-pyrrole | | | • | - | | - c | 1 0 | ⊠ | ⊠ | • | | - | | 1 : | 5 | 300 | 300 | 7-8 | 7-8 | 4-5 | 3 | N | 5 | 8 | 7-8 | 5 | 3-4 | 4-5 | - | 0.11 | 0.09 | 1.40 | 0.26 | | • | | | Paliogen® Red K 4090
old: Cromophtal® Red A3B
C.I. Pigment Red 177
Anthraquinone | | | • | - | | 0 0 | ı 🗆 | | ⊠ | - | | • | | 1 ! | 5 | 260 | 260 | 7-8 | 7-8 | 3 | - | N | 5 | 8 | 7-8 | 5 | 4 | - | - | 0.19 | 0.15 | 1.43 | 0.34 | | • | | | Paliogen® Red K 4180
C.I. Pigment Red 179
Perylene | | | • | • | • | o c | 1 0 | | | • | • | • | _ - | | 5 | 300 | 300 | 8 | 8 | 5 | 4 | Н | 5 | 8 | 8 | 5 | 5 | 5 | 4-5 | 0.17 | 0.13 | 1.50 | 0.36 | | | |
^{*}Products with this C.I. number may vary in color and resistance properties in different polymer systems. | Organic pigments | | | | | | Å | Аррі | licat | ions | 5 | | | | | | | | | | Appl | icatio | ns pe | rform | ance | | | | | | | Phy | | | | vailab
parati | | |---|---------------|-----------------|-----|------------|-----|-----|------|-------|------|--------|-----|----------|-----------|-------------------|--------------|-----|--------------|---------------|---------------|------------------------|------------------------|---------|-------------------|---------------|---------------|--------------------------|--------------------------|------------------------|------------------------|--|---------------------------------------|---------|--------------|-------------|-----------------------------|---------------| | | | | | | | Gen | eral | | | | | Fik | oers | | | | | HD | PE | | | | | | | PVC- | р | | | | prop | erues | | pre | parau | JIIS | | | Full
shade | White reduction | PVC | 0 % | ABS | PA6 | PET | PC | PMMA | Rubber | PUR | <u>a</u> | PET
PA | Migration FS 0.1% | Heat FS 0.1% | | Heat WR 1:10 | Light FS 0.1% | Light WR 1:10 | Weather 3000 h FS 0.1% | Weather 3000 h WR 1:10 | Warping | Migration FS 0.1% | Light FS 0.1% | Light WR 1:10 | Hot light 600 kJ FS 0.1% | Hot light 600 kJ WR 1:10 | Weather 5000 h FS 0.1% | Weather 5000 h WR 1:10 | 1/3 ISD in HDPE (1% TiO ₂) | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | Eupolen® PE | Microlen® MC
Micranyl® Q | Microlith® KP | | Cinquasia® Red K 4104
old: Cromophtal® Red 2020
C.I. Pigment Violet 19
Quinacridone | | | - | | | | | | ⊠ | | • | • | | 5 | 300 | 0 3 | 300 | 8 | 8 | 4-5 | 3-4 | L | 5 | 8 | 8 | 5 | 5 | 4-5 | 3-4 | 0.37 | 0.33 | 1.51 | 0.21 | | • | | | Cinquasia® Red K 4111
old: Cromophtal® Red TBR
C.I. Pigment Violet 19
Quinacridone | | | • | | • 0 | × | ⊠ | ⋈ | ⊠ | - 1 | - | _ | × | 4.8 | 260 | 0 2 | 260 | 8 | 8 | 4-5 | 3 | L | 5 | 8 | 7-8 | 4-5 | 4-5 | 4 | - | 0.29 | 0.29 | 1.50 | 0.24 | | • | | | Irgalite® Red K 4170 FP
old: Irgalite® Red 2BP
C.I. Pigment Red 48:2*
BONA (Ca) | | | • | = C | | × | | ⊠ | | - 1 | • | - | ⊠ ⊠ | 5 | 220 | 0 2 | 240 | 7 | 6 | | - | L | 5 | 7 | 6 | - | - | - | - | 0.13 | 0.12 | 1.57 | 0.18 | | • • | | | Irgalite® Rubine K 4270 FP
old: Irgalite® Rubine 4BP
C.I. Pigment Red 57:1*
BONA (Ca) | | | • | = 0 | | × | | | | • | | • | ⊠ ⊠ | 5 | 240 | 0 2 | 260 | 6-7 | 4-5 | - | - | L | 5 | 6 | 4 | - | - | - | - | 0.15 | 0.10 | 1.50 | 0.17 | | • • | | | Irgalite® Rubine K 4275 FP
old: Irgalite® Rubine 4BFP
C.I. Pigment Red 57:1*
BONA (Ca) | | | • | = 0 | | × | | ⊠ | | • | | • | × | 5 | 220 | 0 2 | 240 | 6-7 | 4 | | - | L | 5 | 6-7 | 6 | | | | - | 0.15 | 0.10 | 1.57 | 0.22 | | | | | Cinquasia® Red K 4330
old: Cinquasia® Red B RT-195-D
-
Quinacridone | | | - | | • 0 | ⊠ | | ⊠ | ⊠ | | | - | | 5 | 290 | 0 3 | 300 | 8 | 8 | 4 | - | L | 5 | 8 | 8 | 5 | 4-5 | 4-5 | 4 | 0.30 | 0.29 | 1.59 | 0.20 | | • | | ^{*}Products with this C.I. number may vary in color and resistance properties in different polymer systems. | Organic pigments | | | | | | | Арр | licat | ions | 5 | | | | | | | | | | Арр | licatio | ons pe | erform | ance | | | | | | | Phys | | | | vailal | | |---|---------------|-----------------|-----|----------|-----------|-----|------|-------|------|--------|-----|--------------|------------|----------|-------------------|--------------|--------------|---------------|---------------|------------------------|------------------------|---------|-------------------|---------------|---------------|--------------------------|--------------------------|------------------------|------------------------|---|---------------------------------------|---------|--------------|-------------|--------------|------| | | | | | | | Ger | nera | 1 | | | | Fil | oers | | | | | Н | DPE | | | | | | | PVC-p |) | | | | prope | erties | i | pre | parat | ions | | | Full
shade | White reduction | PVC | P0 | PS
ABS | PA6 | PET | PC | PMMA | Rubber | PUR | G | PET
PA | <u> </u> | Migration FS 0.1% | Heat FS 0.1% | Heat WR 1:10 | Light FS 0.1% | Light WR 1:10 | Weather 3000 h FS 0.1% | Weather 3000 h WR 1:10 | Warping | Migration FS 0.1% | Light FS 0.1% | Light WR 1:10 | Hot light 600 kJ FS 0.1% | Hot light 600 kJ WR 1:10 | Weather 5000 h FS 0.1% | Weather 5000 h WR 1:10 | 1/3 ISD in HDPE (1 % TiO ₂) | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | Eupolen® PE | Microlen® MC | | | Cinquasia® Pink K 4410
old: Cromophtal® Pink 2000
C.I. Pigment Red 122
Quinacridone | | | | - 1 | - | I 🗵 | | ⊠ | | - | - | | o c | 1 | 5 | 300 | 300 | 8 | 8 | 4-5 | 3-4 | L | 5 | 8 | 8 | 5 | 5 | 4-5 | 4-5 | 0.20 | 0.20 | 1.50 | 0.10 | • | | | | Cinquasia® Pink K 4430 FP
old: Cromophtal® Pink PT
C.I. Pigment Red 122
Quinacridone | | | | • | | I 🛛 | | ⊠ | | • | • | • | - | | 5 | 300 | 300 | 8 | 8 | 4-5 | 3-4 | L | 5 | 8 | 7-8 | 5 | 5 | 4-5 | 4-5 | 0.20 | 0.19 | 1.49 | 0.15 | | • | | | Cinquasia® Magenta K 4535 FP
old: Cromophtal® Magenta P
C.I. Pigment Red 202
Quinacridone | | | | • | - | - | | ⊠ | | • | | - | - | | 5 | 300 | 300 | 8 | 8 | 4 | 3 | L | 5 | 8 | 7-8 | 5 | 4-5 | 4-5 | 4 | 0.23 | 0.20 | 1.67 | 0.14 | | • | • | | Cinquasia® Violet K 5350 FP
old: Cromophtal® Violet RP
C.I. Pigment Violet 19
Quinacridone | | | | | • • | ⊠ | | | ⊠ | - 1 | • | - | | 1 | 5 | 300 | 300 | 8 | 7-8 | 4 | - | L | 5 | 7-8 | 7 | 4-5 | 4 | 4 | 3 | 0.23 | 0.15 | 1.49 | 0.17 | | • |) | | Paliogen® Red Violet K 5411
old: Paliogen® Red Violet K 5011
C.I. Pigment Violet 29
Perylene | | | • | - | • - | ı 🗆 | | | • | | - | • | • | | 5 | 300 | 300 | 8 | 8 | 4 | 3 | Н | 5 | 8 | 8 | 5 | 5 | 5 | 3-4 | 0.18 | 0.06 | 1.60 | 0.23 | | | | | Cromophtal® Violet K 5700
old: Cromophtal® Violet B
C.I. Pigment Violet 37
Dioxazine | | | | | | ⊠ | | ⊠ | ⊠ | - 1 | • | | X X | 1 | 4.9 | 280 | 260 | 8 | 7-8 | 4-5 | 3 | L | 5 | 7-8 | 6-7 | 4-5 | - | 3-4 | - | 0.09 | 0.07 | 1.32 | 0.38 | | • (| • | | Cromophtal® Violet K 5800
old: Cromophtal® Violet GT
C.I. Pigment Violet 23
Dioxazine | | | • | _ (| | | | | ⊠ | | • | - | ⊠ ■ | | 3-4 | 240 | 260 | 7-8 | 3-4 | 4 | 3-4 | L | 4.3 | 8 | 6-7 | 4-5 | 3 | 4-5 | - | 0.07 | 0.06 | 1.42 | 0.35 | | • | | | Organic pigments | | | | | | Δ | ppl | icat | ion | s | | | | | | | | | | | Арр | icatio | ons p | erforn | nance | | | | | | | | sical | | | | ailable | |---|-----------------|-----|---|----|-----|-----|------|------|------|--------|-----|---|------|----|-------------------|--------------|-----|--------------|---------------|---------------|------------------------|------------------------|---------|-------------------|---------------|---------------|--------------------------|--------------------------|------------------------|------------------------|---------------------------|---------------------------------------|---------|--------------|---|-----------------------------|---------------------------| | | | | | | (| Gen | eral | | | | | F | ibei | rs | | | | | HD | PE | | | | | | | PVC- | р | | | | prop | erties | \$ | ķ | orepa | arations | | Full
shade | White reduction | PVC | Ю | PS | ABS | PA6 | PET | PC | PMMA | Rubber | PUR | ф | PET | РА | Migration FS 0.1% | Heat FS 0.1% | | Heat WR 1:10 | Light FS 0.1% | Light WR 1:10 | Weather 3000 h FS 0.1% | Weather 3000 h WR 1:10 | Warping | Migration FS 0.1% | Light FS 0.1% | Light WR 1:10 | Hot light 600 kJ FS 0.1% | Hot light 600 kJ WR 1:10 | Weather 5000 h FS 0.1% | Weather 5000 h WR 1:10 | 1/3 ISD in HDPE (1% TiO.) | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | | Eupoien∜ PE
Microlen® MC | Micranyl® Q Microlith® KP | | Heliogen® Blue K 6850 / K 6860
C.I. Pigment Blue 15
Cu-phthalocyanine | | • | | ⊠ | ⊠ | × | | | ⊠ | | | ⊠ | ⊠ | | 5 | 220 | 0 2 | 220 | 8 | 8 | 5 | 5 | Н | 5 | 8 | 8 | 5 | 3-4 | 3-4 | 3-4 | 0.09 | 0.08 | 1.62 | 0.21 | | | | | Heliogen® Blue K 6902
C.I. Pigment Blue 15:1
Cu-phthalocyanine | | • | - | - | - | - | - | - | | | - | ⊠ | × | | 5 | 30 | 0 3 | 300 | 8 | 8 | 5 | 5 | Н | 5 | 8 | 8 | 5 | 4-5 | 4-5 | 4 | 0.11 | 0.09 | 1.60 | 0.32 | | • | | | Heliogen® Blue K 6907
C.I. Pigment Blue 15:1
Cu-phthalocyanine | | • | • | - | - | - | - | • | | | - | - | • | - | 5 | 30 | 0 3 | 300 | 8 | 8 | 5 | 5 | Н | 5 | 8 | 8 | 4-5 | 4-5 | 5 | 4 | 0.10 | 0.08 | 1.60 | 0.32 | | • | | | Heliogen® Blue K 6911 / K 6912 FP
old: Heliogen® Blue K 6911 D / FP
C.I. Pigment Blue 15:1
Cu-phthalocyanine | | • | • | | • | • | • | • | • | - | • | | • | • | 5 | 30 | 0 3 | 300 | 8 | 8 | 5 | 5 | Н | 5 | 8 | 8 | 4-5 | 4-5 | 5 | 4 | 0.09 | 0.07 | 1.60 | 0.33 | | • | • | | Heliogen® Blue K 6916
C.I. Pigment Blue 15:1
Cu-phthalocyanine | | | • | | | • | - | _ | | | | | • | • | 5 | 26 | 0 2 | 280 | 7-8 | 7-8 | 4-5 | 4-5 | Н | 4.5 | 8 | 6-7 | 5 | 3-4 | 5 | 4 | 0.09 | 0.08 | 1.60 | 0.20 | | • | | | Heliogen® Blue K 7090 / FP
C.I. Pigment Blue 15:3
Cu-phthalocyanine | | • | • | - | - | - | - | • | - | - | • | - | - | - | 5 | 28 | 0 2 | 280 | 8 | 8 | 5 | 5 | Н | 5 | 8 | 8 | 4-5 | 5 | 4-5 | 4-5 | 0.12 | 0.09 | 1.60 | 0.20 | • | • | • • | | Heliogen® Blue K 7096
old: Irgalite® Blue GBP
C.I. Pigment Blue 15:3
Cu-phthalocyanine | | • | - | - | - | • | - | - | - | | - | - | - | - | 5 | 30 | 0 3 | 300 | 8 | 8 | 5 | 5 | Н | 5 | 7-8 | 7-8 | 4-5 | 4-5 | 4-5 | 3-4 | 0.11 | 0.09 | 1.60 | 0.32 | | | | | Heliogen® Blue K 7104 LW
C.I. Pigment Blue 15:4
Cu-phthalocyanine | | • | - | - | - | - | - | - | - | - |
• | ⊠ | ⊠ | | 5 | 30 | 0 3 | 300 | 8 | 8 | 5 | 5 | L | 5 | 8 | 8 | 4-5 | 4 | 4 | 3-4 | 0.11 | 0.09 | 1.60 | 0.20 | | • | | | Heliogen® Green K 8730 / FP
C.I. Pigment Green 7
Cu-phthalocyanine | | • | • | | • | | _ | • | | | | | • | • | 5 | 30 | 0 3 | 300 | 8 | 8 | 5 | 5 | Н | 5 | 8 | 8 | 5 | 5 | 5 | 4-5 | 0.24 | 0.19 | 2.10 | 0.30 | | • | • • | | Heliogen® Green K 9360
C.I. Pigment Green 36
Cu-phthalocyanine | | • | - | | | | - | | | | | | 0 | | 5 | 30 | 0 3 | 300 | 8 | 8 | 5 | 5 | Н | 5 | 8 | 8 | 5 | 5 | 5 | 4-5 | 0.30 | 0.26 | 2.10 | 0.40 | | • | | | Inorganic pigments
Sicotan® | | | | | | Αŗ | plio | cati | ons | 3 | | | | | | | | | | Ар | plica | ations | s per | forma | ance | | | | | | | Phys | | | |--|--------------------|-----|----------|-----|-----|-----|------|----------|------|--------|-----|----------|-----|----|-----------------|------------|-------------|-------------|--------------|----------------------|-------|-----------------------|---------|-----------------|-------------|--------------|------------------------|-------------------------|----------------------|-----------------------|---------------------------------------|---------|--------------|-------------------| | Sicolari | | | | | Ge | ene | ral | ı | | | | Fi | ber | s | | | | Н | PE | | | | | | | F | PVC-p |) | | | | orope | erties | | | Full
shade r | White
reduction | PVC | O : | PS | ABS | 949 | Ē 8 | 2 : | PMMA | Rubber | PUR | ₽ | PET | РА | Migration FS 1% | Heat FS 1% | Heat WR 1:4 | Light FS 1% | Light WR 1:4 | Weather 3000 h FS 1% | | Weather 3000 h WR 1:4 | Warping | Migration FS 1% | Light FS 1% | Light WR 1:4 | Hot light 600 kJ FS 1% | Hot light 600 kJ WR 1:4 | Weather 5000 h FS 1% | Weather 5000 h WR 1:4 | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | FG form available | | Sicotan® Yellow K 1010
C.I. Pigment Yellow 53
Ni/Sb/Ti oxide | | • | - | - 1 | | • • | • • | | | - 1 | | | | | 5 | 300 | 300 | 8 | 8 | 5 | | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 3.3
(1/9
ISD) | 4.50 | 0.90 | | | Sicotan® Yellow K 1011
C.I. Pigment Yellow 53
Ni/Sb/Ti oxide | | - | - | - 1 | - | | | • | | - | | | | | 5 | 300 | 300 | 8 | 8 | 5 | | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 3.1
(1/9
ISD) | 4.40 | 0.80 | • | | Sicotan® Yellow K 2001
C.I. Pigment Brown 24
Cr/Sb/Ti oxide | | • | - 1 | - 1 | | • | • | • | | - 1 | | _ | | | 5 | 300 | 300 | 8 | 8 | 5 | | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 2.7 | 4.50 | 0.60 | • | | Sicotan® Yellow K 2011
C.I. Pigment Brown 24
Cr/Sb/Ti oxide | | • | • | • | - | | | . | | • | | | | | 5 | 300 | 300 | 8 | 8 | 5 | | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 3.8 | 4.50 | 0.70 | • | | Sicotan® Yellow K 2111
C.I. Pigment Brown 24
Cr/Sb/Ti oxide | | • | - 1 | - 1 | - | • | • | . | - | - 1 | | | | | 5 | 300 | 300 | 8 | 8 | 5 | | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 3.0 | 4.40 | 0.80 | • | | Sicotan® Yellow K 2112
C.I. Pigment Brown 24
Cr/Sb/Ti oxide | | • | • | • | - | | | • 1 | | - 1 | | | | | 5 | 300 | 300 | 8 | 8 | 5 | | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 3.4 | 4.40 | 0.90 | • | | Sicotan® Brown K 2611
C.I. Pigment Yellow 164
Mn/Sb/Ti oxide | | | . | | | • | • | | | ⊠ I | | | | | 5 | 300 | 300 | 8 | 8 | 5 | | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 3.2 | 4.30 | 0.90 | | | Sicotan® Brown K 2711
C.I. Pigment Yellow 164
Mn/Sb/Ti oxide | | • | • | - 1 | - | | • | • | | ⊠ I | | | | | 5 | 300 | 300 | 8 | 8 | 5 | | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 2.5 | 4.80 | 0.90 | , | | Inorganic pigments
Sicopal® | 3 | | | | | 6 | A _l | ppli
eral | icat | tion | s | | F | ibe | rs | | | | НГ |)PE | Арр | licatio | ons pe | erform | ance | | PVC- _I | | | | | Phys
prope | | i | |--|---------------|--------------------|-----|----|----|-----|----------------|--------------|------|------|--------|-----|---|-----|----|-----------------|------------|-------------|-------------|--------------|----------------------|-----------------------|---------|-----------------|-------------|--------------|------------------------|-------------------------|----------------------|-----------------------|---------------------------------------|---------------|--------------|-------------------| | | Full
shade | White
reduction | PVC | РО | PS | ABS | PA6 | PET | PC | PMMA | Rubber | PUR | Ь | PET | РА | Migration FS 1% | Heat FS 1% | Heat WR 1:4 | Light FS 1% | Light WR 1:4 | Weather 3000 h FS 1% | Weather 3000 h WR 1:4 | Warping | Migration FS 1% | Light FS 1% | Light WR 1:4 | Hot light 600 kJ FS 1% | Hot light 600 kJ WR 1:4 | Weather 5000 h FS 1% | Weather 5000 h WR 1:4 | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | FG form available | | Sicopal® Yellow K 1120 FG
C.I. Pigment Yellow 184
Bismuth vanadate | | | | | | | ⊠ | ⊠ | _ | | | | ⊠ | × | | 5 | 250 | 260 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | - | - | - | - | 1.0 | 4.10 | 0.80 | • | | Sicopal® Yellow K 1160 FG
C.I. Pigment Yellow 184
Bismuth vanadate | | | | - | • | | - | | _ | - | - | _ | • | - | • | 5 | 280 | 260 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | - | v | · | - | 1.6 | 4.10 | 0.80 | • | | Sicopal® Orange K 2430
C.I. Pigment Orange 82
Sn/Zn/Ti oxide | | | • | • | • | • | • | - | - | - | • | • | • | - | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 2.2 | 4.80 | 0.75 | | | Sicopal® Brown K 2595
C.I. Pigment Yellow 119
Zn/Fe oxide | | | _ | - | | - | - | - | | - | - | - | | 0 | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | - | ÷ | ÷ | - | 1.6 | 5.30 | 0.70 | | | Sicopal® Brown K 2795 FG
C.I. Pigment Brown 29
Fe/Cr oxide | | | • | - | | • | | - | | - | - | - | | _ | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | - | - | - | - | 0.5 | 5.20 | 0.50 | • | | Sicopal® Blue K 6210
C.I. Pigment Blue 28
Co/Al oxide | | | • | - | • | - | - | - | - | - | - | - | | _ | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 3.4 | 4.00 | 0.50 | | | Sicopal® Blue K 6310
C.I. Pigment Blue 28
Co/Al oxide | | | • | • | • | - | • | - | - | - | - | - | | _ | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 3.1 | 4.50 | 0.40 | | | Sicopal® Blue K 7210
C.I. Pigment Blue 36
Co/Al/Cr oxide | | | • | - | • | • | - | - | | - | • | - | | | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 2.6 | 4.50 | 0.50 | | | Inorganic pigments
Sicopal® | | | | | | | • | | atio | ns | | | ., | | | | | | | Appl | icatio | ns pe | rform | ance | | 21/0 | | | | | Phys | | | |---|---------------|--------------------|-----|----|----|-----|------------|-----|------|--------|-----|----|------|----|-----------------|------------|-------------|-------------|--------------|----------------------|-----------------------|---------|-----------------|-------------|--------------|------------------------|-------------------------|----------------------|-----------------------|--|---------|--------------|-------------------| | · | | | | | | G | ener | al | ī | | | F | iber | S | | | | HD | PE | | | | | | | PVC-p | | | | | | | | | | Full
shade | White
reduction | PVC | ЬО | PS | ABS | PA6
PFT | - L | PMMA | Rubber | PUR | ЬР | PET | PA | Migration FS 1% | Heat FS 1% | Heat WR 1:4 | Light FS 1% | Light WR 1:4 | Weather 3000 h FS 1% | Weather 3000 h WR 1:4 | Warping | Migration FS 1% | Light FS 1% | Light WR 1:4 | Hot light 600 kJ FS 1% | Hot light 600 kJ WR 1:4 | Weather 5000 h FS 1% | Weather 5000 h WR 1:4 | 1/3 ISD in PVC (1 % TiO ₂) | Density | Bulk density | FG form available | | Sicopal® Green K 9610
C.I. Pigment Green 50
Co/Ti/Ni/Zn oxide | | | | | • | | | - | - | - | • | | | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 2.9 | 4.90 | 0.90 | | | Sicopal® Green K 9710
C.I. Pigment Green 50
Co/Ti/Ni/Zn oxide | | | • | - | - | - 1 | - | - | - | - | - | | | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 2.9 | 4.80 | 0.70 | | | Sicopal® Black K 0090
C.I. Pigment Black 27
Co/Cr/Fe/Mn oxide | | | • | | • | • | | - | • | - | | | | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 1.5 | 4.90 | 1.00 | | | Sicopal® Black K 0095
C.I. Pigment Brown 29
Fe/Cr oxide | | | | - | • | - 1 | - | - | - | • | | | | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | 5 | 5 | 5 | 5 | 1.4 | 5.20 | 0.70 | | | Inorganic pigments
Sicotrans® | | | Applications General Fibers | | | | | | | | Applications p | | | | | | | | erformance
PVC-p | | | | | | | Physical properties | | | | | | |---|--------------|-----------------|------------------------------|----------|-----|-----|----|------|--------|---|----------------|-----|-----------------|------------|-------------|-------------|--------------|----------------------|-----------------------|---------|-----------------|-------------|--------------|------------------------|-------------------------|----------------------|-----------------------|---------------------------------------|---------|--------------|-------------------| | | Full
hade | White reduction | PVC | Po
Po | ABS | PA6 | PC | PMMA | Rubber | | . H | . A | Migration FS 1% | Heat FS 1% | Heat WR 1:4 | Light FS 1% | Light WR 1:4 | Weather 3000 h FS 1% | Weather 3000 h WR 1:4 | Warping | Migration FS 1% | Light FS 1% | Light WR 1:4 | Hot light 600 kJ FS 1% | Hot light 600 kJ WR 1:4 | Weather 5000 h FS 1% | Weather 5000 h WR 1:4 | 1/3 ISD in PVC (1% TiO ₂) | Density | Bulk density | FG form available | | Sicotrans® Red K 2819
C.I. Pigment Red 101
Iron oxide | | | | | • | - | | • | - - | | - | • | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | - | - | | - | 0.58 | 4.40 | 0.30 | | | Sicotrans® Red K 2915
C.I. Pigment Red
101
Iron oxide | | | | | - | - 1 | | • | | - | | | 5 | 300 | 300 | 8 | 8 | 5 | 5 | N | 5 | 8 | 8 | - | - | | - | 0.27 | 5.10 | 0.50 | | ## **Organic and inorganic pigments** ## for plastics #### ···► Asia BASF East Asia Regional Headquarters Limited Performance Chemicals 45th Floor, Jardine House No. 1 Connaught Place Hong Kong Phone: +852 2731-0111 Fax: +852 2731-5633 #### ···► Europe BASF Schweiz AG Plastic Additives Klybeckstr. 141 4057 Basel Switzerland Phone: +41 61 636-1111 Fax: +41 61 636-1212 #### ···► North America BASF Corporation Plastic Additives 100 Campus Drive Florham Park, NJ 07932 USA Phone: +1 973 245-6000 Fax: +1 973 895-8002 #### ···► South America BASF S. A. Sede Administrativa Av. das Nações Unidas,14.171, Morumbi 04794-000 São Paulo, SP Brasil Phone: +55 11 2039-2273 #### Note The descriptions, designs, data and information contained herein are presented in good faith, and are based on BASF's current knowledge and experience. They are provided for guidance only, and do not constitute the agreed contractual quality of the product or a part of BASF's terms and conditions of sale. Because many factors may affect processing or application/use of the product, BASF recommends that the reader carry out its own investigations and tests to determine the suitability of a product for its particular purpose prior to use. It is the responsibility of the recipient of product to ensure that any proprietary rights and existing laws and legislation are observed. No warranties of any kind, either expressed or implied, including, but not limited to, warranties of merchantability or fitness for a particular purpose, are made regarding products described or designs, data or information set forth herein, or that the products, descriptions, designs, data or information may be used without infringing the intellectual property rights of others. Any descriptions, designs, data and information given in this publication may change without prior information. The descriptions, designs, data and information furnished by BASF hereunder are given gratis and BASF assumes no obligation or liability for the descriptions, designs, data or information given or results obtained, all such being given and accepted at the reader's risk. ® = registered trademark of BASF SE